On Hadamard Matrices at Roots of Unity

نویسنده

  • TEODOR BANICA
چکیده

Abstract. We study Hadamard matrices of order n, formed by l-th roots of unity. A main problem is to find the allowed values of (n, l), and we discuss here the following statement: for l = pa 1 . . . pa s we must have n ∈ p1+. . .+psN. For s = 1 this is a previously known result, for s = 2, 3 this is a result that we prove in this paper, and for s ≥ 4 this is a conjecture that we raise. We present as well some remarks and comments regarding the other known obstructions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphisms of Butson classes

We introduce the concept of a morphism from the set of Butson Hadamard matrices over k th roots of unity to the set of Butson matrices over l roots of unity. As concrete examples of such morphisms, we describe tensor-product-like maps which reduce the order of the roots of unity appearing in a Butson matrix at the cost of increasing the dimension. Such maps can be constructed from Butson matric...

متن کامل

Classifying cocyclic Butson Hadamard matrices

We classify all the cocyclic Butson Hadamard matrices BH(n, p) of order n over the pth roots of unity for an odd prime p and np ≤ 100. That is, we compile a list of matrices such that any cocyclic BH(n, p) for these n, p is equivalent to exactly one element in the list. Our approach encompasses non-existence results and computational machinery for Butson and generalized Hadamard matrices that a...

متن کامل

A note on the existence of BH(19, 6) matrices

In this note we utilize a non-trivial block approach due to M. Petrescu to exhibit a Butson-type complex Hadamard matrix of order 19, composed of sixth roots of unity. 1 A new Butson-type complex Hadamard matrix A complex Hadamard matrix H is an n × n complex matrix with unimodular entries such that HH∗ = nIn, where ∗ denotes the Hermitian adjoint and In is the identity matrix of order n. Throu...

متن کامل

Small circulant complex Hadamard matrices of Butson type

We study the circulant complex Hadamard matrices of order n whose entries are l-th roots of unity. For n = l prime we prove that the only such matrix, up to equivalence, is the Fourier matrix, while for n = p+ q, l = pq with p, q distinct primes there is no such matrix. We then provide a list of equivalence classes of such matrices, for small values of n, l.

متن کامل

Tri-weight Codes and Generalized Hadamard Matrices

The existence is shown of a set of (p~ -1) generalized Hadamard matrices H(p, p~'~) of order p2'~, each of which is symmetric and regular. When normalized to become unitary matrices, they form a multiplicative group of order p'~, simply isomorphic to the additive group of GF(pm). The rows of these (p~ 1) matrices are shown to be the image, under the well-known isomorphic mapping relating the pt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007